

SYMBOL KNOWLEDGE EXTRACTION

From a Simple Graphical Language

Jinpeng LI, Harold MOUCHERE, Christian VIARD-GAUDIN

www.projet-depart.org

OUTLINE

- I. Background
- 2. Graphical Symbol Knowledge Extraction
- 2.1.Quantization (Clustering)
- 2.2.Construction of Relational Graph
- 2.3.Lexicon Extraction
- 3. Conclusion

BACKGROUND

What is the graphical symbol knowledge extraction?

Annotation
20 symbols
have to be labelled

Annotation
7 symbols (sets)
have to be labelled

TRADITIONAL GRAPHICAL LANGUAGE RECOGNITION

Training

Exams(Tests)

TRADITIONAL GRAPHICAL LANGUAGE RECOGNITION

Known graphical symbols (defined manually)

Recognition

Training

Classifiers

SVM: Support Vector Machine

ANN: Artificial Neural Network

HMM: Hidden Markov Model, etc.

SYMBOL KNOWLEDGE EXTRACTION

Unknown graphical language

Could we recover or discover these symbols?

SYMBOL KNOWLEDGE EXTRACTION FROM A SIMPLE GRAPHICAL LANGUAGE

As an example, we use mathematical expressions as an unknown graphical language.

GRAPHICAL LANGUAGE

Online handwritten strokes

Sampling

Collected data

Stroke1: $((x_1,y_1),(x_2,y_2),(x_3,y_3),...)$

Stroke2: $((x_1,y_1),(x_2,y_2),(x_3,y_3),...)$

GRAPHICAL SYMBOL KNOWLEDGE EXTRACTION

The base elements are strokes.

This horizontal stroke repeats six times; it is "frequent".

Grapheme!

One stroke

Where is the horizontal stroke from?

GRAPHICAL SYMBOL KNOWLEDGE EXTRACTION

From a part of symbol, "plus"

Grapheme!

horizontal stroke from?

From two same symbols "equal"

From a symbol, "minus"

OUTLINES

- I. Background
- 2. Symbol Knowledge Extraction
- 2.1.Quantization (Clustering)
- 2.2.Construction of Relational Graph
- 2.3.Lexicon Extraction
- 3. Conclusion

HIERARCHICAL CLUSTERING

[1] Lance, G. N. & Williams, W.T., A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems, The Computer Journal, 1967, 9, 373-380

QUANTIZATION

[1] Lance, G. N. & Williams, W.T., A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems, The Computer Journal, 1967, 9, 373-380

GRAPHICAL SYMBOL DISCOVER

2. Construction of relational graph

SPATIAL RELATIONS

We predefine three spatial relations:

Right, Below, and Intersection

RELATIONAL GRAPH

16

LEXICON EXTRACTION

2. Construction of relational graph

3. Lexicon extraction Reduce the description length

MINIMUM DESCRIPTION LENGTH PRINCIPLE

3. Lexicon extraction

Reduce the description length

$$(2_{(0)}, R, ..., -_{(4)}, R, \angle_{(6)}, I, |_{(7)})$$

 $(2_{(0)}, R, ..., -_{(4)}, B, -_{(5)}, R, \angle_{(6)}, I, |_{(7)})$

As a naive example, we try to analyze a sequence, "1234-2/1234".

We define the description length (DL) as the number of letters.

DL("1234-2/1234")=11

[2] Marcken, C. D., Linguistic Structure as Composition and Perturbation, In Meeting of the Association for Computational Linguistics, Morgan Kaufmann Publishers, 1996, 335-341

MINIMUM DESCRIPTION I FNGTH PRINCIPLE

As a naive example, we try to analyze a sequence, "1234-2/1234".

We define the description length (DL) as the number of letters.

DL("|234-2/|234")=||

If we replace "12" as S,

$$DL("S34-2/S34")+DL("12")=(11.)$$

If we replace "123" as **S**,
$$DL("S4-2/S4")+DL("123")\neq 10$$

If we replace "1234" as S,

Best lexical unit

[2] Marcken, C. D., Linguistic Structure as Composition and Perturbation, In Meeting of the Association for Computational Linguistics, Morgan Kaufmann Publishers, 1996, 335-341

19

MINIMUM DESCRIPTION LENGTH PRINCIPLE

Replace frequent patterns in order to compress data

DISCOVER WORDS ITERATIVELY

Lexicon: = +

LEXICON EXTRACTION

2. Construction of relational graph

SYNTHETIC DATABASE FROM REAL HANDWRITTEN ISOLATED CHARACTERS

 $N_{i=\{1,2,3\}}$ is 70% of 1 digit, 20% of 2 digits and 10% of 3 digits randomly.

5427 symbols

3035 symbols

RECALL RATE (EXPERIMENTS)

$$R_{\text{Recall}} = \frac{|S(e, G) \cap S(e, L)|}{|S(e, G)|} = 0.5$$

S(e, G):ground-truth for the expression.

$$S(e,G) = \{\{-_{(4)},-_{(5)}\},\{\angle_{(6)},|_{(7)}\}\}$$

S(e, L):hierarchical segmentation using lexicon L.

$$S(e,L) = \{\{-_{(4)}\}, \{-_{(5)}\}, \{-_{(4)}, -_{(5)}\}, \{\angle_{(6)}\}, \{|_{(7)}\}\}$$

We got the recall rate of 74%(2245 symbols) on the test part of our database.

CONCLUSION

- Extraction of graphemes and quantization
- Construction of relational graph
- · Lexicon extraction using minimum description length principle
- The recall rate of 74% (2245 symbols) is obtained.

FUTURE WORK

- Reduce the description length on relational graphs instead of sequences [3].
- · Unsupervised spatial relation learning for complex spatial relations.

[3]Jinpeng Li, Harold Mouchère and Christian Viard-Gaudin. Unsupervised Handwritten Graphical Symbol Learning Using Minimum Description Length Principle on Relational Graph, International Conference on Knowledge Discovery and Information Retrieval, KDIR 2011, Paris, France.

THANKYOU FOR YOUR ATTENTION

Questions?

Presentation can be downloaded from LiJinpeng.org